یک روش تکراری برای جواب پادمتقارن و جواب تقریبی بهینه ی معادله ی ماتریسی axb=c

پایان نامه
چکیده

با استفاده از روش های تکراری پادمتقارن و معادلات ماتریسی متشابه جواب تقریبی بهینه را برای معادله ی ماتریسی axb=c را از روی ماتریس های معین a و b و c، پیدا می کنیم، به طوری که هدف تعیین ماتریس x می باشد.

منابع مشابه

روش تکراری برای پیداکردن جواب های متقارن و پادمتقارن معادله ی ماتریسی خطی axb+cyd=e

در این پایان نامه دو روش تکراری برای به دست آوردن جواب های متقارن و پادمتقارن معادله ی ماتریسی خطی ‎$ axb+cyd=e $‎ ارائه می شود. به وسیله ی این دو روش تکراری، حل پذیری جواب های متقارن و پادمتقارن برای معادله ی ماتریسی خطی ‎$ axb+cyd=e $‎ به طور خودکار می تواند تعیین شود. زمانی که این معادله ی ماتریسی خطی جواب های متقارن ‎(پادمتقارن)‎ دارد، آن گاه برای هر جفت ماتریس متقارن ‎(پادمتقارن)‎ اولیه ی ...

روش‌های تکراری برای محصور کردن مجموعه جواب معادله ماتریسی سیلوستر پارامتری

در این مقاله، معادله ماتریسی سیلوستر پارامتری (A(p)X+XB(p)=C(p را که عناصر آن توابعی خطی از پارامترهای متغیر در بازه‌ها هستند بررسی می‌کنیم. ابتدا چند ویژگی از مجموعه جواب این معادله پارامتری را بیان می‌کنیم و سپس به کمک این ویژگی‌ها چند شرط کافی برای کرانداری مجموعه جواب ارائه می‌کنیم. پس از آن بر پایه خصوصیات مطرح شده برای مجموعه جواب، دو روش تکراری برای یافتن حصارهایی برای آن معرفی می‌کنیم. ...

متن کامل

بررسی جواب تقریبی مدل ریاضی مسئله ی اغتشاشی تکین شامل معادله ی مرتبه ی دوم خطی با ضرایب متغیر با شرایط مرزی دیریکله

موضوع اصلی این مقاله بررسی جواب­های مدل ریاضی مسائل اغتشاشی تکین است که در خیلی ازپدیده­ های فیزیکی و مهندسی ازجمله مکانیک سیالات، واکنش­های شیمیایی، مدارهای الکترونیکی، عمران و دینامیک شاره­ها ظاهر می­شوند. یک مسئله­ی اغتشاشی تکین در واقع یک مسئله­ی مقدار مرزی است که در ضریب بالاترین مرتبه­ی مشتق موجود در معادله­ ی دیفرانسیل، پارامتر کوچک و مثبت ε ظاهر می­شود. در این مقاله ساختار جواب­ های تقر...

متن کامل

یک جواب عددی پایدار برای یک مسئله ی کران متحرک معکوس انتقال حرارت با استفاده از روش مارچینگ

در این مقاله کاربرد روش مارچینگ و روش مولیفیکیشن برای حل یک مسئله کران متحرک مربوط به معادله گرما مورد بررسی قرار میگیرد. دادههای این مسئله بهصورت همراه با اختلال در نظر گرفته میشوند. یک روند منظمسازی براساس روش مولیفیکیشن و نیز روش مارچینگ برای حل مسئله مورد نظر ارائه میگردد و همگرایی و پایداری جواب این روش اثبات می شود. چند مثال عددی به منظور نشان دادن توانایی روش و نیز کارایی آن مورد بررسی ق...

متن کامل

جواب های دومتقارن معادله ی ماتریسی ‎$a_1x_1b_1+a_2x_2b_2+dots+a_lx_lb_l=c$‎ و تقریب بهینه ی آن

در این پایان نامه یک روش تکراری برای پیدا کردن جواب های دومتقارن معادله ی ماتریسی ‎‎ ‎$ a_1x_1b_1+a_2x_2b_2+dots+a_lx_lb_l=c $‎ که ‎$ [x_1,x_2,dots,x_l] $‎ دسته ماتریس های حقیقی می باشد، ساخته شده است. به وسیله ی این روش تکراری، حل پذیری معادلات ماتریسی تشخیص داده می شود. زمانی که معادله ی ماتریسی سازگار است، برای هر دسته ماتریس دومتقارن اولیه ی ‎$ [x_1^{(0)},x_2^{(0)},dots,x_l^{(0)}] $‎، یک...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023